Some results on functionally convex sets in real Banach spaces
Authors
Abstract:
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition of notion F--convexiy.
similar resources
Functionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
full textfunctionally closed sets and functionally convex sets in real banach spaces
let $x$ be a real normed space, then $c(subseteq x)$ is functionally convex (briefly, $f$-convex), if $t(c)subseteq bbb r $ is convex for all bounded linear transformations $tin b(x,r)$; and $k(subseteq x)$ is functionally closed (briefly, $f$-closed), if $t(k)subseteq bbb r $ is closed for all bounded linear transformations $tin b(x,r)$. we improve the krein-milman theorem ...
full textOn remotality for convex sets in Banach spaces
We show that every in nite dimensional Banach space has a closed and bounded convex set that is not remotal. This settles a problem raised by Sababheh and Khalil in [8].
full textConvex Optimization on Banach Spaces
Greedy algorithms which use only function evaluations are applied to convex optimization in a general Banach space X . Along with algorithms that use exact evaluations, algorithms with approximate evaluations are treated. A priori upper bounds for the convergence rate of the proposed algorithms are given. These bounds depend on the smoothness of the objective function and the sparsity or compre...
full textSome results on SIP Ed-frames in Banach spaces
The notion of frame in a Banach spaces E via semi-inner product was introduced and studied in [16]. In this paper, we give a characterisation for SIP-II Ed-Bessel sequence to be SIP-II Ed-frame. Also, a necessary and sufficient condition for the finite sum of SIP-II Ed frame for E to be a SIP-II Ed frame for E has been obtained. Further, a sufficient condition for the stability of finite sum of...
full textSome Results on Convex Spectral Functions: I
In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...
full textMy Resources
Journal title
volume 3 issue 1
pages 61- 67
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023